Given:
\[
\sqrt{3} \sin \theta = \cos \theta
\]
Step 1: Divide both sides by \(\cos \theta\) (assuming \(\cos \theta \neq 0\))
\[
\sqrt{3} \tan \theta = 1
\]
\[
\tan \theta = \frac{1}{\sqrt{3}}
\]
Step 2: Find \(\theta\) using known value of \(\tan \theta\)
\[
\tan 60^\circ = \sqrt{3}, \quad \tan 30^\circ = \frac{1}{\sqrt{3}}
\]
So,
\[
\theta = 30^\circ
\]
Step 3: Verify the correct value using the original equation
Check if \(\theta = 30^\circ\) satisfies the equation:
\[
\sqrt{3} \sin 30^\circ = \sqrt{3} \times \frac{1}{2} = \frac{\sqrt{3}}{2}
\]
\[
\cos 30^\circ = \frac{\sqrt{3}}{2}
\]
Both sides are equal.
Final Answer:
\[
\boxed{30^\circ}
\]