We are given that \( x = 2\sin 60^\circ \cos 60^\circ \) and \( y = \sin^2 30^\circ - \cos^2 30^\circ \). We also have \( x^2 = ky^2 \).
First, let's find the value of \( x \).
\( x = 2\sin 60^\circ \cos 60^\circ = 2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) = 2\left(\frac{\sqrt{3}}{4}\right) = \frac{\sqrt{3}}{2} \).
Next, let's find the value of \( y \).
\( y = \sin^2 30^\circ - \cos^2 30^\circ = \left(\frac{1}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} - \frac{3}{4} = \frac{-2}{4} = -\frac{1}{2} \).
Now, we have \( x^2 = ky^2 \). Substituting the values of \( x \) and \( y \), we get:
\( \left(\frac{\sqrt{3}}{2}\right)^2 = k\left(-\frac{1}{2}\right)^2 \)
\( \frac{3}{4} = k\left(\frac{1}{4}\right) \)
\( 3 = k \)
Therefore, the value of \( k \) is 3.
Final Answer: \( \boxed{3} \)
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Leaves of the sensitive plant move very quickly in response to ‘touch’. How is this stimulus of touch communicated and explain how the movement takes place?
Read the following sources of loan carefully and choose the correct option related to formal sources of credit:
(i) Commercial Bank
(ii) Landlords
(iii) Government
(iv) Money Lende