Let the drone be flying at height \(h\) m.
Let the horizontal distance between drone and turbine be \(x\) m.
From the diagram:
- Height of turbine = 200 m
- Angle of elevation of top of turbine = \(60^\circ\)
- Angle of depression of foot of turbine = \(30^\circ\)
So, difference in height between drone and top of turbine:
\[
\text{Top part: } \tan 60^\circ = \dfrac{200 - h}{x} \quad \Rightarrow \sqrt{3} = \dfrac{200 - h}{x} \quad \text{(1)}
\]
\[
\text{Bottom part: } \tan 30^\circ = \dfrac{h}{x} \quad \Rightarrow \dfrac{1}{\sqrt{3}} = \dfrac{h}{x} \quad \text{(2)}
\]
From (2): \(x = h \sqrt{3}\)
Substitute into (1):
\[
\sqrt{3} = \dfrac{200 - h}{h \sqrt{3}} \Rightarrow \sqrt{3} \cdot h \sqrt{3} = 200 - h
\Rightarrow 3h = 200 - h \Rightarrow 4h = 200 \Rightarrow h = 50
\]
Wait, double-check:
From (2): \(x = h \sqrt{3}\)
Sub into (1):
\[
\sqrt{3} = \dfrac{200 - h}{h \sqrt{3}} \Rightarrow \sqrt{3} \cdot h \sqrt{3} = 200 - h
\Rightarrow 3h = 200 - h \Rightarrow 4h = 200 \Rightarrow h = 50
\Rightarrow x = h \sqrt{3} = 50 \cdot 1.73 = 86.5
\]
Now find the slant distance from drone to top of turbine (hypotenuse of triangle):
\[
\text{Using Pythagoras: } d^2 = x^2 + (200 - h)^2 = (86.5)^2 + (150)^2 = 7482.25 + 22500 = 29982.25
\Rightarrow d = \sqrt{29982.25} \approx 173\, \text{m}
\]