Given polynomial:
\[
r(x) = 4x^2 + 3x - 1
\]
Step 1: Find the zeroes of \(r(x)\)
Zeroes of polynomial \(ax^2 + bx + c = 0\) are given by:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Here, \(a = 4\), \(b = 3\), and \(c = -1\).
Calculate discriminant:
\[
\Delta = b^2 - 4ac = 3^2 - 4 \times 4 \times (-1) = 9 + 16 = 25
\]
Therefore,
\[
x = \frac{-3 \pm \sqrt{25}}{2 \times 4} = \frac{-3 \pm 5}{8}
\]
So the zeroes are:
\[
x_1 = \frac{-3 + 5}{8} = \frac{2}{8} = \frac{1}{4}
\]
\[
x_2 = \frac{-3 - 5}{8} = \frac{-8}{8} = -1
\]
Step 2: Find polynomial whose zeroes are reciprocals of zeroes of \(r(x)\)
Reciprocal zeroes are:
\[
\frac{1}{x_1} = 4, \quad \frac{1}{x_2} = -1
\]
Sum of reciprocal zeroes:
\[
4 + (-1) = 3
\]
Product of reciprocal zeroes:
\[
4 \times (-1) = -4
\]
Let the required polynomial be \(p(x) = x^2 - (\text{sum of zeroes})x + (\text{product of zeroes})\)
\[
p(x) = x^2 - 3x - 4
\]
Final Answer:
Zeroes of \(r(x)\) are \(\frac{1}{4}\) and \(-1\)
Polynomial with zeroes reciprocal to those of \(r(x)\) is:
\[
x^2 - 3x - 4 = 0
\]