In the adjoining figure, \( \triangle CAB \) is a right triangle, right angled at A and \( AD \perp BC \). Prove that \( \triangle ADB \sim \triangle CDA \). Further, if \( BC = 10 \text{ cm} \) and \( CD = 2 \text{ cm} \), find the length of } \( AD \).
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.