The vector equation of any plane passing through the line of intersection of the planes $ \bar{r} \cdot \bar{n}_1 = q_1 $ and $ \bar{r} \cdot \bar{n}_2 = q_2 $ is given by $ \bar{r} \cdot (\bar{n}_1 + \lambda \bar{n}_2) = q_1 + \lambda q_2 $ for $ \lambda \in \bar{R} $. The vector equation of a plane passing through the point $ 2\bar{i} - 3\bar{j} + \bar{k} $ and the line of intersection of the planes $ \bar{r} \cdot (\bar{i} - 2\bar{j} + 3\bar{k}) = 5 $, $ \bar{r} \cdot (3\bar{i} + \bar{j} - 2\bar{k}) = 7 $ is
Let $ A = \begin{bmatrix} 2 & 1 & 3 & -1 \\1 & -2 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 & 3 \\1 & -1 & 2 & 3 \end{bmatrix} $, and the equation $ 2A + 3B - 5C = 0 $. Find the matrix $ C $.
At $ x = \frac{\pi^2}{4} $, $ \frac{d}{dx} \left( \operatorname{Tan}^{-1}(\cos \sqrt{x}) + \operatorname{Sec}^{-1}(e^x) \right) = $At $ x = \frac{\pi^2}{4} $, $ \frac{d}{dx} \left( \operatorname{Tan}^{-1}(\cos \sqrt{x}) + \operatorname{Sec}^{-1}(e^x) \right) = $