Step 1: Express equation in terms of \(\tan \theta\)
Rewrite:
\[
2 \sin^2 \theta - 3 \cos^2 \theta = \sin \theta \cos \theta
\]
Divide both sides by \(\cos^2 \theta\) (where \(\cos \theta \neq 0\)):
\[
2 \tan^2 \theta - 3 = \tan \theta
\]
Step 2: Rearrange to quadratic in \(\tan \theta\)
\[
2 \tan^2 \theta - \tan \theta - 3 = 0
\]
Step 3: Solve quadratic
\[
\tan \theta = \frac{1 \pm \sqrt{1 + 24}}{4} = \frac{1 \pm 5}{4}
\]
So,
\[
\tan \theta = \frac{6}{4} = \frac{3}{2}, \quad \text{or} \quad \tan \theta = \frac{-4}{4} = -1
\]
Step 4: Find solutions in \((- \pi, \pi)\)
Each value corresponds to two solutions in \((- \pi, \pi)\), total 4 solutions.