Step 1: Rewrite the expression
\[
\left(\frac{3x - 5}{4x^2 + 3}\right)^{-4/5} = \left(\frac{4x^2 + 3}{3x - 5}\right)^{4/5}
\]
Step 2: Approximate numerator and denominator for large \(x\)
\[
4x^2 + 3 \approx 4x^2 \left(1 + \frac{3}{4x^2}\right), \quad 3x - 5 \approx 3x \left(1 - \frac{5}{3x}\right)
\]
Step 3: Express as product
\[
\left(\frac{4x^2}{3x}\right)^{4/5} \left(\frac{1 + \frac{3}{4x^2}}{1 - \frac{5}{3x}}\right)^{4/5} = \left(\frac{4x}{3}\right)^{4/5} \left(1 + \frac{3}{4x^2}\right)^{4/5} \left(1 - \frac{5}{3x}\right)^{-4/5}
\]
Step 4: Use binomial expansion
\[
(1 + u)^r \approx 1 + r u + \frac{r(r-1)}{2} u^2
\]
Apply to both factors with:
\[
u_1 = \frac{3}{4x^2}, \quad r = \frac{4}{5}
\]
\[
u_2 = -\frac{5}{3x}, \quad r = -\frac{4}{5}
\]
Calculate expansions and multiply.
Step 5: Result
\[
\left(\frac{4x}{3}\right)^{4/5} \left(1 + \frac{4}{3x} + \frac{13}{5x^2}\right)
\]