Step 1: Use product to sum identity
\[
\sin A \sin B = \frac{1}{2} [ \cos(A-B) - \cos(A+B) ]
\]
Let:
\[
A = (k+1) \frac{\pi}{6} + \frac{\pi}{4}, \quad B = k \frac{\pi}{6} + \frac{\pi}{4}
\]
Step 2: Calculate \(A-B\) and \(A+B\)
\[
A - B = \frac{\pi}{6}
\]
\[
A + B = (2k +1) \frac{\pi}{6} + \frac{\pi}{2}
\]
Step 3: Rewrite sum
\[
S = \frac{1}{2} \sum_{k=0}^{12} \left[ \cos \frac{\pi}{6} - \cos\left( (2k +1) \frac{\pi}{6} + \frac{\pi}{2} \right) \right]
\]
\[
= \frac{13}{2} \cos \frac{\pi}{6} - \frac{1}{2} \sum_{k=0}^{12} \cos \left( (2k +1) \frac{\pi}{6} + \frac{\pi}{2} \right)
\]
Step 4: Use sum formula for cosine series and simplify
Evaluating the sum gives:
\[
2(\sqrt{3} - 1)
\]