Step 1: Use formula for sum of inverse tangents
\[
\tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right)
\]
Step 2: Let
\[
a = \frac{\sqrt{8} - 2\sqrt{15}}{\sqrt{15} + 1}, \quad b = \frac{1}{\sqrt{5}}
\]
Step 3: Calculate numerator
\[
a + b = \frac{\sqrt{8} - 2\sqrt{15}}{\sqrt{15} + 1} + \frac{1}{\sqrt{5}}
\]
Step 4: Calculate denominator
\[
1 - ab = 1 - \left(\frac{\sqrt{8} - 2\sqrt{15}}{\sqrt{15} + 1}\right) \times \frac{1}{\sqrt{5}}
\]
Step 5: Simplify fraction
After simplification, the value equals \(\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}\).
Therefore,
\[
\tan^{-1} a + \tan^{-1} b = \frac{\pi}{6}
\]