Step 1: Use notation for sides
Let the two sides be \(a\) and \(b\) such that:
\[
a + b = x, \quad ab = y
\]
Step 2: Given
\[
x^2 - c^2 = y
\]
Step 3: Express \(c\) in terms of \(a\) and \(b\)
Using \(a + b = x\),
\[
x^2 = (a + b)^2 = a^2 + 2ab + b^2 = a^2 + b^2 + 2y
\]
So,
\[
x^2 - y = a^2 + b^2 + y
\]
Given,
\[
x^2 - c^2 = y \implies c^2 = x^2 - y
\]
Step 4: Use cosine law
\[
c^2 = a^2 + b^2 - 2ab \cos C = (a^2 + b^2) - 2 y \cos C
\]
Substitute \(c^2 = x^2 - y\):
\[
x^2 - y = (a^2 + b^2) - 2 y \cos C
\]
Using previous relations:
\[
a^2 + b^2 = x^2 - 2 y
\]
Therefore:
\[
x^2 - y = (x^2 - 2 y) - 2 y \cos C \implies -y = -2 y - 2 y \cos C \implies 2 y \cos C = - y \implies \cos C = -\frac{1}{2}
\]
Step 5: Angle \(C\)
\[
\cos C = -\frac{1}{2} \implies C = 120^\circ = \frac{2\pi}{3}
\]
Step 6: Use formula for circumradius \(R\)
\[
R = \frac{c}{2 \sin C} = \frac{c}{2 \sin 120^\circ} = \frac{c}{2 \times \frac{\sqrt{3}}{2}} = \frac{c}{\sqrt{3}}
\]