Step 1: Calculate \(|\vec{a} \times \vec{b}|\)
\[
\vec{a} = (1, p, -3), \quad \vec{b} = (p, -3, 1)
\]
\[
\vec{a} \times \vec{b} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
1 & p & -3 \\
p & -3 & 1
\end{vmatrix} = \vec{i} (p \times 1 - (-3) \times (-3)) - \vec{j} (1 \times 1 - (-3) \times p) + \vec{k} (1 \times (-3) - p \times p)
\]
\[
= \vec{i} (p - 9) - \vec{j} (1 + 3p) + \vec{k} (-3 - p^2)
\]
\[
|\vec{a} \times \vec{b}|^2 = (p - 9)^2 + (1 + 3p)^2 + (-3 - p^2)^2
\]
Step 2: Calculate \(|\vec{a} \times \vec{c}|\)
\[
\vec{c} = (-3, 1, 2)
\]
\[
\vec{a} \times \vec{c} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
1 & p & -3 \\
-3 & 1 & 2
\end{vmatrix} = \vec{i} (p \times 2 - (-3) \times 1) - \vec{j} (1 \times 2 - (-3) \times (-3)) + \vec{k} (1 \times 1 - p \times (-3))
\]
\[
= \vec{i} (2p + 3) - \vec{j} (2 - 9) + \vec{k} (1 + 3p)
\]
\[
|\vec{a} \times \vec{c}|^2 = (2p + 3)^2 + (-7)^2 + (1 + 3p)^2
\]
Step 3: Set \(|\vec{a} \times \vec{b}| = |\vec{a} \times \vec{c}|\)
\[
(p - 9)^2 + (1 + 3p)^2 + (-3 - p^2)^2 = (2p + 3)^2 + 49 + (1 + 3p)^2
\]
Step 4: Simplify and solve for \(p\)
\[
(p - 9)^2 + (-3 - p^2)^2 = (2p + 3)^2 + 49
\]
Expanding and simplifying yields \(p = 2\).