Step 1: Find quadrant of \(\theta\)
Given \(630^\circ<\theta<810^\circ\), which lies in the fourth quadrant (since \(630^\circ = 270^\circ + 360^\circ\)).
Step 2: Use \(\tan \theta = -\frac{7}{24}\)
\[
\tan \theta = \frac{\sin \theta}{\cos \theta} = -\frac{7}{24}
\]
Step 3: Find \(\cos \theta\)
Using Pythagorean identity:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
\[
\left(\frac{-7}{25}\right)^2 + \cos^2 \theta = 1
\]
(since \(\tan \theta = \frac{-7}{24}\), the hypotenuse is 25)
Calculate:
\[
\cos \theta = \pm \frac{24}{25}
\]
In the fourth quadrant, cosine is positive, so:
\[
\cos \theta = \frac{24}{25}
\]
Step 4: Use half-angle formula for \(\cos \frac{\theta}{4}\)
\[
\cos \frac{\theta}{4} = \pm \sqrt{\frac{1 + \cos \frac{\theta}{2}}{2}}
\]
Use multiple half-angle reductions to find exact value, eventually simplifying to:
\[
-\sqrt{\frac{7 + 5\sqrt{2}}{10 \sqrt{2}}}
\]