Step 1: Use quadratic formula terms
For quadratic \( a x^2 + b x + c = 0 \), roots are \( \alpha \) and \( \beta \).
Step 2: Sum and product of roots
\[
\alpha + \beta = \frac{-b}{a}, \quad \alpha \beta = \frac{c}{a}
\]
Here, \( a = \sqrt{2} \), \( b = -b \), \( c = 8 - 2\sqrt{5} \).
Sum:
\[
\alpha + \beta = \frac{b}{\sqrt{2}}
\]
Product:
\[
\alpha \beta = \frac{8 - 2\sqrt{5}}{\sqrt{2}}
\]
Step 3: Harmonic mean (HM)
\[
HM = \frac{2}{\frac{1}{\alpha} + \frac{1}{\beta}} = \frac{2 \alpha \beta}{\alpha + \beta} = 4
\]
Substitute:
\[
\frac{2 \times \frac{8 - 2\sqrt{5}}{\sqrt{2}}}{\frac{b}{\sqrt{2}}} = 4 \implies \frac{2(8 - 2\sqrt{5})}{b} = 4
\]
Step 4: Solve for \( b \)
\[
\frac{2(8 - 2\sqrt{5})}{b} = 4 \implies 2(8 - 2\sqrt{5}) = 4b \implies b = \frac{2(8 - 2\sqrt{5})}{4} = \frac{8 - 2\sqrt{5}}{2} = 4 - \sqrt{5}
\]