Step 1: Express \(2\cos \theta + \sin \theta = 1\)
Rewrite as:
\[
a = 2, \quad b = 1, \quad a \cos \theta + b \sin \theta = 1
\]
Step 2: Maximum and minimum of \(a \cos \theta + b \sin \theta\)
\[
R = \sqrt{a^2 + b^2} = \sqrt{4 + 1} = \sqrt{5}
\]
The equation holds for some \(\theta\) if \(|1| \le R\), which is true.
Step 3: Write \(7 \cos \theta + 6 \sin \theta\) in terms of \(a \cos \theta + b \sin \theta\)
Let:
\[
X = \cos \theta, \quad Y = \sin \theta
\]
Given constraint:
\[
2X + Y = 1
\]
We want:
\[
k = 7X + 6Y
\]
Step 4: Express \(X\) and \(Y\)
From constraint:
\[
Y = 1 - 2X
\]
Substitute into \(k\):
\[
k = 7X + 6(1 - 2X) = 7X + 6 - 12X = 6 - 5X
\]
Step 5: Use \(X^2 + Y^2 = 1\)
\[
X^2 + (1 - 2X)^2 = 1
\]
\[
X^2 + 1 - 4X + 4X^2 = 1
\]
\[
5X^2 - 4X = 0
\]
\[
X(5X - 4) = 0
\]
Step 6: Solve for \(X\)
\[
X = 0 \quad \text{or} \quad X = \frac{4}{5}
\]
Step 7: Calculate \(k\)
If \(X=0\), then:
\[
k = 6 - 5 \times 0 = 6
\]
If \(X = \frac{4}{5}\), then:
\[
k = 6 - 5 \times \frac{4}{5} = 6 - 4 = 2
\]