If a real valued function
$$
f(x) = \begin{cases}
\frac{\sin a(x - [x])}{e^{x - [x]}}, & x<1 \\
b + 1, & x = 1 \\
\frac{|x^2 + x - 2|}{x - 1}, & x>1
\end{cases}
$$
is continuous at $ x=1 $, then find $ b $.
Here, $ [x] $ denotes the greatest integer function.