Step 1: Observe identity structure.
\[
\cos^2(2x) + \sin^2(3x) = 1.
\]
Recall \(\sin^2(\theta)=1-\cos^2(\theta)\). So the equation suggests
\(\cos^2(2x) = \cos^2(3x)\).
Hence
\[
\cos^2(2x) - \cos^2(3x) = 0.
\]
Step 2: Factor the difference of squares.
\[
\cos^2(2x) - \cos^2(3x) = \bigl[\cos(2x)-\cos(3x)\bigr]\bigl[\cos(2x)+\cos(3x)\bigr] =0.
\]
So either
\[
\cos(2x)=\cos(3x)
\quad\text{or}\quad
\cos(2x)=-\cos(3x).
\]
Step 3: Solve each case.
- \(\cos(2x)=\cos(3x)\) implies \(2x = 3x + 2n\pi\) or \(2x = -3x + 2m\pi\).
- \(\cos(2x)=-\cos(3x)\) implies \(2x = \pi \pm 3x + 2k\pi\), etc.
A careful solution reduces to solutions of the form \(x=\frac{n\pi}{5}\), \(n\in\mathbb{Z}\).