Step 1: Compute \( \vec{b}\times \vec{c} \).\[ \vec{b}\times \vec{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{vmatrix} \]\[ = \mathbf{i}\bigl((-1)\cdot(-1) - 2\cdot2\bigr) - \mathbf{j}\bigl(1\cdot(-1) -2\cdot1\bigr) + \mathbf{k}\bigl(1\cdot2 -(-1)\cdot1\bigr). \]\[ = \mathbf{i}\,(1-4) -\mathbf{j}\,(-1 -2) +\mathbf{k}\,(2+1) \]\[ = -3\,\mathbf{i} +3\,\mathbf{j} +3\,\mathbf{k}. \]So \( \vec{b}\times \vec{c}=3(-\mathbf{i} +\mathbf{j} +\mathbf{k}) \).
Step 2: Use \( \cos\angle(\vec{a},\,\vec{b}\times \vec{c})=\tfrac{2}{\sqrt{3}} \).
Since \( \vec{a} \) is a unit vector, we compute:\[ \lvert \vec{b}\times \vec{c} \rvert = \lvert 3(-\mathbf{i} +\mathbf{j} +\mathbf{k}) \rvert \]\[ = 3\sqrt{3}. \]Using the formula:\[ \cos\angle(\vec{a},\,\vec{b}\times \vec{c}) = \frac{\vec{a}\cdot(\vec{b}\times \vec{c})}{\lvert \vec{a}\rvert\,\lvert \vec{b}\times \vec{c}\rvert} \]We solve for:\[ \vec{a}\cdot(\vec{b}\times \vec{c}) = 6. \]
Step 3: Find \( \lvert \vec{a}\times(\vec{b}\times \vec{c})\rvert \).
Using the vector triple product identity:\[ \lvert \vec{a}\times(\vec{b}\times \vec{c})\rvert^2 + (\vec{a}\cdot(\vec{b}\times \vec{c}))^2 = \lvert \vec{b}\times \vec{c}\rvert^2. \]Substituting values:\[ \lvert \vec{a}\times(\vec{b}\times \vec{c})\rvert^2 + 6^2 = (3\sqrt{3})^2. \]\[ \lvert \vec{a}\times(\vec{b}\times \vec{c})\rvert^2 = 27 - 36 = 9. \]
Thus, the final result is:
\[ \lvert \vec{a}\times(\vec{b}\times \vec{c})\rvert = \boxed{3}. \]
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).