Step 1: Label each point by its position vector.
\[
A = \mathbf{i} + \mathbf{j},\quad
B = \mathbf{j} + \mathbf{k},\quad
C = \mathbf{k} + \mathbf{i},\quad
D = \mathbf{i} - \mathbf{j},\quad
E = \mathbf{j} - \mathbf{k}.
\]
Step 2: Parametric form of line \(AB\).
\[
\overrightarrow{AB}
= B - A
= (\mathbf{j}+\mathbf{k}) \;-\; (\mathbf{i}+\mathbf{j})
= -\mathbf{i} + \mathbf{k}.
\]
Any point on line \(AB\) is
\[
P(t) = A + t\,\overrightarrow{AB}
= (\mathbf{i}+\mathbf{j}) + t(-\mathbf{i} + \mathbf{k})
= (1 - t)\,\mathbf{i} + \mathbf{j} + t\,\mathbf{k}.
\]
Step 3: Plane through \(C, D, E\).
- Two direction vectors are \(\overrightarrow{CD} = D - C\) and \(\overrightarrow{CE} = E - C\).
- A normal to that plane is \(\overrightarrow{CD}\times \overrightarrow{CE}\).
- Then use point \(C\) to find the plane equation and solve for the intersection with line \(AB\).
Step 4: Substituting yields \(t = \tfrac{1}{2}\).
Hence the intersection point is
\[
P\!\Bigl(\tfrac{1}{2}\Bigr)
= \Bigl(1 - \tfrac12\Bigr)\mathbf{i} + \mathbf{j} + \tfrac12\,\mathbf{k}
= \tfrac12\,\mathbf{i} + \mathbf{j} + \tfrac12\,\mathbf{k}.
\]
By the given labeling, this corresponds to \(\tfrac12\,\mathbf{i} + \mathbf{j} + \tfrac12\,\mathbf{k}\).