We are given the binomial expansion:
\[
\left( 5x + \frac{7}{x} \right)^{-\frac{3}{2}}
\]
and need to determine the fourth term \( T_4 \) in its expansion, then compute:
\[
\left( x^3 \cdot \sqrt{5x} \right) T_4
\]
Step 1: Binomial Expansion Formula
Using the general binomial expansion formula:
\[
( a + b )^n = \sum_{k=0}^{\infty} \binom{n}{k} a^{n-k} b^k
\]
where:
\[
a = 5x, \quad b = \frac{7}{x}, \quad n = -\frac{3}{2}
\]
Step 2: Compute the Fourth Term \( T_4 \)
The general term in the expansion is:
\[
T_k = \binom{-\frac{3}{2}}{k-1} (5x)^{-\frac{3}{2} - (k-1)} \left(\frac{7}{x}\right)^{k-1}
\]
For the fourth term \( T_4 \), we set \( k = 4 \):
\[
T_4 = \binom{-\frac{3}{2}}{3} (5x)^{-\frac{3}{2} - 3} \left(\frac{7}{x}\right)^3
\]
Computing binomial coefficient:
\[
\binom{-\frac{3}{2}}{3} = \frac{-\frac{3}{2}(-\frac{5}{2})(-\frac{7}{2})}{3!} = \frac{-\frac{3}{2} \times -\frac{5}{2} \times -\frac{7}{2}}{6}
\]
\[
= \frac{-105}{48}
\]
Computing powers:
\[
(5x)^{-9/2} = 5^{-9/2} x^{-9/2}
\]
\[
\left(\frac{7}{x}\right)^3 = \frac{7^3}{x^3}
\]
Thus:
\[
T_4 = \frac{-105}{48} \times 5^{-9/2} x^{-9/2} \times \frac{7^3}{x^3}
\]
\[
= \frac{-105 \cdot 7^3}{48 \cdot 5^{9/2}} x^{-15/2}
\]
Step 3: Compute \( (x^3 \cdot \sqrt{5x}) T_4 \)
\[
(x^3 \cdot \sqrt{5x}) = x^3 \cdot 5^{1/2} x^{1/2} = 5^{1/2} x^{7/2}
\]
Multiplying with \( T_4 \):
\[
\left( 5^{1/2} x^{7/2} \right) \times \frac{-105 \cdot 7^3}{48 \cdot 5^{9/2}} x^{-15/2}
\]
\[
= \frac{-105 \cdot 7^3 \cdot 5^{1/2}}{48 \cdot 5^{9/2}} x^{-8/2}
\]
\[
= \frac{-105 \cdot 7^3}{48 \cdot 5^4} x^{-4}
\]
Since \( x^{-4} \) simplifies to 1 for the coefficient:
\[
= -\frac{7^4}{2 \cdot 5^3}
\]
Final Answer: \(\boxed{-\frac{7^4}{2 \cdot 5^3}}\)
\bigskip