Step 1: Interpret the multi-valued expression.
\(\bigl(\sqrt{3} - i\bigr)^{\tfrac{2}{5}}\) refers to all 5 distinct values of the fifth-root of \(\bigl(\sqrt{3} - i\bigr)^2\). If we let
\[
W \;=\; \bigl(\sqrt{3} - i\bigr)^2,
\]
then the 5 values of \(W^{1/5}\) multiply to \(W\).
Step 2: Compute \(\bigl(\sqrt{3} - i\bigr)^2\).
Expand:
\[
(\sqrt{3} - i)^2
=
3 - 2\sqrt{3}\,i + i^2
=
3 - 2\sqrt{3}\,i - 1
=
2 - 2\sqrt{3}\,i
=
2\,(1 - \sqrt{3}\,i).
\]
Thus
\[
W \;=\; 2\,(1 - \sqrt{3}\,i).
\]
Step 3: Product of the 5 distinct 5th roots of \(W\).
A fundamental result for complex \(n\)th roots shows that the product of all 5 distinct roots of \(W\) is precisely \(W\). Hence the product of all values of \(\bigl(\sqrt{3} - i\bigr)^{\tfrac{2}{5}}\) is
\[
\boxed{2\,(1 - \sqrt{3}\,i)}.
\]