If the function
$ f(x) = \begin{cases} \frac{\cos ax - \cos 9x}{x^2}, & \text{if } x \neq 0 \\ 16, & \text{if } x = 0 \end{cases} $
is continuous at $ x = 0 $, then $ a = ? $
If \[ z = \frac{(2-i)(1+i)^3}{(1-i)^2} \] then \[ \text{Arg}(z) = ? \]
\[ \sin^{-1} x - \cos^{-1} 2x = \sin^{-1} \left(\frac{\sqrt{3}}{2}\right) - \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) \]
Then, \[ \tan^{-1} x + \tan^{-1} \left(\frac{x}{x+1}\right) = ? \]
\[ \text{sech}^{-1}\left(\frac{3}{5}\right) - \text{tanh}^{-1}\left(\frac{3}{5}\right) = ? \]
In a triangle ABC, if \( a = 5 \), \( b = 3 \), and \( c = 7 \), then the ratio:
\[ \sqrt{\frac{\sin(A - B)}{\sin(A + B)}} \]