The magnitude of the projection of vector \( \mathbf{b} \) onto vector \( \mathbf{a} \) is determined using the formula: \[ \left| \text{Projection of } \mathbf{b} \text{ onto } \mathbf{a} \right| = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}. \]
Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \). \[ \mathbf{a} \cdot \mathbf{b} = (4\hat{i} + 5\hat{j} - 3\hat{k}) \cdot (6\hat{i} - 2\hat{j} - 2\hat{k}). \] Applying the dot product formula: \[ \mathbf{a} \cdot \mathbf{b} = 4(6) + 5(-2) + (-3)(-2) = 24 - 10 + 6 = 20. \] Thus, \( \mathbf{a} \cdot \mathbf{b} = 20 \).
Step 2: Determine the magnitude of \( \mathbf{a} \). \[ |\mathbf{a}| = \sqrt{4^2 + 5^2 + (-3)^2} = \sqrt{16 + 25 + 9} = \sqrt{50} = 5\sqrt{2}. \] \
Step 3: Compute the magnitude of the projection. \[ \left| \text{Projection of } \mathbf{b} \text{ onto } \mathbf{a} \right| = \frac{20}{5\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}. \] Hence, the magnitude of the projection of \( \mathbf{b} \) onto \( \mathbf{a} \) is: \[ \boxed{2\sqrt{2}}. \]
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is:
Given the function:
\[ f(x) = \frac{2x - 3}{3x - 2} \]
and if \( f_n(x) = (f \circ f \circ \ldots \circ f)(x) \) is applied \( n \) times, find \( f_{32}(x) \).