The magnitude of the projection of vector \( \mathbf{b} \) onto vector \( \mathbf{a} \) is determined using the formula: \[ \left| \text{Projection of } \mathbf{b} \text{ onto } \mathbf{a} \right| = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}. \]
Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \). \[ \mathbf{a} \cdot \mathbf{b} = (4\hat{i} + 5\hat{j} - 3\hat{k}) \cdot (6\hat{i} - 2\hat{j} - 2\hat{k}). \] Applying the dot product formula: \[ \mathbf{a} \cdot \mathbf{b} = 4(6) + 5(-2) + (-3)(-2) = 24 - 10 + 6 = 20. \] Thus, \( \mathbf{a} \cdot \mathbf{b} = 20 \).
Step 2: Determine the magnitude of \( \mathbf{a} \). \[ |\mathbf{a}| = \sqrt{4^2 + 5^2 + (-3)^2} = \sqrt{16 + 25 + 9} = \sqrt{50} = 5\sqrt{2}. \] \
Step 3: Compute the magnitude of the projection. \[ \left| \text{Projection of } \mathbf{b} \text{ onto } \mathbf{a} \right| = \frac{20}{5\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}. \] Hence, the magnitude of the projection of \( \mathbf{b} \) onto \( \mathbf{a} \) is: \[ \boxed{2\sqrt{2}}. \]
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
| Gas | CO₂ | Ar | HCHO | CH₄ |
|---|---|---|---|---|
| \(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.