Question:

If \( \mathbf{a} = 4\hat{i} + 5\hat{j} - 3\hat{k} \) and \( \mathbf{b} = 6\hat{i} - 2\hat{j} - 2\hat{k} \) are two vectors, then the magnitude of the component of \( \mathbf{b} \) parallel to \( \mathbf{a} \) is:

Show Hint

To find the projection of one vector onto another, use the dot product and divide by the magnitude of the vector onto which the projection is made.
Updated On: Mar 23, 2025
  • \( 2\sqrt{2} \)
  • \( 10\sqrt{2} \)
  • \( 4\sqrt{2} \)
  • \( 6\sqrt{2} \) \bigskip
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The magnitude of the projection of vector \( \mathbf{b} \) onto vector \( \mathbf{a} \) is determined using the formula: \[ \left| \text{Projection of } \mathbf{b} \text{ onto } \mathbf{a} \right| = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}. \] 

 Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \). \[ \mathbf{a} \cdot \mathbf{b} = (4\hat{i} + 5\hat{j} - 3\hat{k}) \cdot (6\hat{i} - 2\hat{j} - 2\hat{k}). \] Applying the dot product formula: \[ \mathbf{a} \cdot \mathbf{b} = 4(6) + 5(-2) + (-3)(-2) = 24 - 10 + 6 = 20. \] Thus, \( \mathbf{a} \cdot \mathbf{b} = 20 \). 

Step 2: Determine the magnitude of \( \mathbf{a} \). \[ |\mathbf{a}| = \sqrt{4^2 + 5^2 + (-3)^2} = \sqrt{16 + 25 + 9} = \sqrt{50} = 5\sqrt{2}. \] \

Step 3: Compute the magnitude of the projection. \[ \left| \text{Projection of } \mathbf{b} \text{ onto } \mathbf{a} \right| = \frac{20}{5\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2}. \] Hence, the magnitude of the projection of \( \mathbf{b} \) onto \( \mathbf{a} \) is: \[ \boxed{2\sqrt{2}}. \] 

Was this answer helpful?
1
0