\[ \sin^{-1} x - \cos^{-1} 2x = \sin^{-1} \left(\frac{\sqrt{3}}{2}\right) - \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) \]
Then, \[ \tan^{-1} x + \tan^{-1} \left(\frac{x}{x+1}\right) = ? \]
\(\frac{\pi}{2}\)]
First, recognize that \( \sin^{-1} x \) and \( \cos^{-1} 2x \) are trigonometric inverses, and equating their differences to specific values can be simplified if we match these values to known angles. Given that \( \sin^{-1} \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \) and \( \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \), we find: \[ \sin^{-1} x - \cos^{-1} 2x = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} \] Now, solve for \(x\) knowing that: \[ \sin^{-1} x = \frac{\pi}{6} + \cos^{-1} 2x \] And since \( \sin^{-1} x = \frac{\pi}{6} \) implies \( x = \frac{1}{2} \). Using this in the expression \( \tan^{-1} x + \tan^{-1} \left(\frac{x}{x+1}\right) \): \[ \tan^{-1} \frac{1}{2} + \tan^{-1} \left(\frac{1/2}{3/2}\right) = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} \] Using the tangent addition formula: \[ \tan^{-1} \frac{1/2} + \tan^{-1} \frac{1}{3} = \tan^{-1} \left( \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}} \right) = \tan^{-1} 1 = \frac{\pi}{4} \]
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.