\[ \sin^{-1} x - \cos^{-1} 2x = \sin^{-1} \left(\frac{\sqrt{3}}{2}\right) - \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) \]
Then, \[ \tan^{-1} x + \tan^{-1} \left(\frac{x}{x+1}\right) = ? \]
\(\frac{\pi}{2}\)]
First, recognize that \( \sin^{-1} x \) and \( \cos^{-1} 2x \) are trigonometric inverses, and equating their differences to specific values can be simplified if we match these values to known angles. Given that \( \sin^{-1} \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \) and \( \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \), we find: \[ \sin^{-1} x - \cos^{-1} 2x = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6} \] Now, solve for \(x\) knowing that: \[ \sin^{-1} x = \frac{\pi}{6} + \cos^{-1} 2x \] And since \( \sin^{-1} x = \frac{\pi}{6} \) implies \( x = \frac{1}{2} \). Using this in the expression \( \tan^{-1} x + \tan^{-1} \left(\frac{x}{x+1}\right) \): \[ \tan^{-1} \frac{1}{2} + \tan^{-1} \left(\frac{1/2}{3/2}\right) = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} \] Using the tangent addition formula: \[ \tan^{-1} \frac{1/2} + \tan^{-1} \frac{1}{3} = \tan^{-1} \left( \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}} \right) = \tan^{-1} 1 = \frac{\pi}{4} \]
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
Match the following: