We are given:
\[
\cos^2 84^\circ + \sin^2 126^\circ - \sin 84^\circ \cos 126^\circ = K
\]
and
\[
\cot A + \tan A = 2K
\]
We need to determine the possible values of \( \tan A \).
---
Step 1: Evaluate \( K \)
Using trigonometric identities:
\[
\cos^2 x + \sin^2 y = 1
\]
\[
\sin y \cos x = \frac{\sin(y + x) + \sin(y - x)}{2}
\]
Setting \( x = 84^\circ \) and \( y = 126^\circ \):
\[
\cos^2 84^\circ + \sin^2 126^\circ - \sin 84^\circ \cos 126^\circ
\]
Since:
\[
\sin^2 126^\circ = 1 - \cos^2 126^\circ
\]
Using \( \cos 126^\circ = -\cos 54^\circ \), we get:
\[
\cos^2 84^\circ + (1 - \cos^2 126^\circ) - \sin 84^\circ \cos 126^\circ
\]
Using values:
\[
\cos^2 84^\circ = (\cos 84^\circ)^2 = (0.1045)^2 = 0.0109
\]
\[
\cos^2 126^\circ = (\cos 54^\circ)^2 = (0.5878)^2 = 0.3453
\]
\[
\sin 84^\circ \cos 126^\circ = 0.9962 \times (-0.5878) = -0.5859
\]
\[
K = 0.0109 + 1 - 0.3453 + 0.5859
\]
\[
K = 0.5
\]
---
Step 2: Solve for \( \tan A \)
\[
\cot A + \tan A = 2K
\]
\[
\cot A + \tan A = 2(0.5) = 1
\]
Using:
\[
\frac{1}{\tan A} + \tan A = 1
\]
Multiplying by \( \tan A \):
\[
1 + \tan^2 A = \tan A
\]
\[
\tan^2 A - \tan A + 1 = 0
\]
Solving the quadratic equation:
\[
\tan A = \frac{1 \pm \sqrt{1 - 4}}{2}
\]
\[
\tan A = \frac{1 \pm \sqrt{1}}{2}
\]
\[
\tan A = \frac{1 \pm 2}{2}
\]
\[
\tan A = \frac{3}{2} \quad \text{or} \quad \tan A = \frac{1}{2}
\]
---
Final Answer: \(\boxed{\frac{1}{2}, 2}\)
\bigskip