If the function
$ f(x) = \begin{cases} \frac{\cos ax - \cos 9x}{x^2}, & \text{if } x \neq 0 \\ 16, & \text{if } x = 0 \end{cases} $
is continuous at $ x = 0 $, then $ a = ? $
L’Hˆopital’s Rule is a powerful tool for evaluating limits of indeterminate forms. Remember to check the conditions for applying the rule before using it.
The general solution of the differential equation: \[ (6x^2 - 2xy - 18x + 3y) dx - (x^2 - 3x) dy = 0 \]
$ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} $