Step 1: Recognize a binomial expansion pattern.
Notice
\[
z^3 - 3z^2 + 3z
\;=\;
(z - 1)^3 + 1
\]
because
\[
(z-1)^3 = z^3 - 3z^2 + 3z - 1.
\]
Thus
\[
z^3 - 3z^2 + 3z
=
(z - 1)^3 + 1.
\]
Step 2: Substitute \(z = 1 - \sqrt{3}\,i\).
Then
\[
z - 1
\;=\;
(1 - \sqrt{3}\,i) \;-\; 1
\;=\;
-\sqrt{3}\,i.
\]
Hence
\[
(z - 1)^3
\;=\;
(-\sqrt{3}\,i)^3
=
(-\sqrt{3})^3 \,(i^3)
=
-3\sqrt{3}\,\bigl(i^2 \cdot i\bigr)
=
-3\sqrt{3}\,\bigl(-1 \cdot i\bigr)
=
3\sqrt{3}\,i.
\]
Therefore,
\[
z^3 - 3z^2 + 3z
=
(z-1)^3 + 1
=
3\sqrt{3}\,i + 1
=
\boxed{1 + 3\sqrt{3}\,i}.
\]