Let \( \bar{a} \) be a vector perpendicular to the plane containing non-zero vectors \( \bar{b} \) and \( \bar{c} \). If \( \bar{a}, \bar{b}, \bar{c} \) are such that
\[
|\bar{a} + \bar{b} + \bar{c}| = \sqrt{|\bar{a}|^2 + |\bar{b}|^2 + |\bar{c}|^2},
\]
then
\[
|(\bar{a} \times \bar{b}) \cdot (\bar{a} \times \bar{c})| =
\]