Step 1: Evaluating \( \cos^{-1} \frac{3}{5} \).
Let \( \theta = \cos^{-1} \frac{3}{5} \). Then,
\[
\cos \theta = \frac{3}{5}, \quad \text{so using the Pythagorean theorem,} \quad \sin \theta = \frac{4}{5}
\]
Step 2: Evaluating \( \sin^{-1} \frac{5}{13} \).
Let \( \phi = \sin^{-1} \frac{5}{13} \). Then,
\[
\sin \phi = \frac{5}{13}, \quad \text{so using the Pythagorean theorem,} \quad \cos \phi = \frac{12}{13}
\]
Step 3: Evaluating \( \tan^{-1} \frac{16}{63} \).
Let \( \psi = \tan^{-1} \frac{16}{63} \). Then,
\[
\tan \psi = \frac{16}{63}, \quad \text{so using trigonometric identity,} \quad \sin \psi = \frac{16}{65}, \quad \cos \psi = \frac{63}{65}
\]
Step 4: Adding the angles.
\[
\theta + \phi + \psi = \cos^{-1} \frac{3}{5} + \sin^{-1} \frac{5}{13} + \tan^{-1} \frac{16}{63}
\]
Using the identity:
\[
\cos^{-1} a + \sin^{-1} a = \frac{\pi}{2}
\]
we simplify:
\[
\theta + \phi + \psi = \frac{\pi}{2}
\]
Thus, the correct answer is:
\[
\mathbf{\frac{\pi}{2}}
\]