Step 1: Understanding the Rydberg formula
The wavenumber \( \tilde{\nu} \) is given by the Rydberg formula:
\[
\tilde{\nu} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)
\]
where \( Z \) is the atomic number, \( R \) is the Rydberg constant, and \( n_1, n_2 \) are energy levels.
Step 2: Wavenumber for He\(^+\) (Lyman series, first line)
For He\(^+\), the transition from \( n_2 = 2 \) to \( n_1 = 1 \) is:
\[
\tilde{\nu}_{\text{He}^+} = R(2^2) \left( \frac{1}{1^2} - \frac{1}{2^2} \right) = 4R \left( \frac{3}{4} \right) = 3R
\]
Given that this wavenumber is \( x \), we set:
\[
3R = x
\]
Step 3: Wavenumber for Li\(^{2+}\) (Balmer series, second line)
For Li\(^{2+}\), the second Balmer line corresponds to \( n_2 = 4 \) to \( n_1 = 2 \):
\[
\tilde{\nu}_{\text{Li}^{2+}} = R(3^2) \left( \frac{1}{2^2} - \frac{1}{4^2} \right) = 9R \left( \frac{4}{16} - \frac{1}{16} \right) = 9R \left( \frac{3}{16} \right) = \frac{27R}{16}
\]
Step 4: Finding the required ratio
Dividing by \( x = 3R \):
\[
\frac{\tilde{\nu}_{\text{Li}^{2+}}}{x} = \frac{\frac{27R}{16}}{3R} = \frac{9}{16}
\]
Thus, \( \tilde{\nu}_{\text{Li}^{2+}} = \frac{9x}{16} \).
\bigskip