For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
A, B and C are disc, solid sphere and spherical shell respectively with the same radii and masses. These masses are placed as shown in the figure. The moment of inertia of the given system about PQ is $ \frac{x}{15} I $, where $ I $ is the moment of inertia of the disc about its diameter. The value of $ x $ is:
A particle of charge $ q $, mass $ m $, and kinetic energy $ E $ enters in a magnetic field perpendicular to its velocity and undergoes a circular arc of radius $ r $. Which of the following curves represents the variation of $ r $ with $ E $?
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
Uniform magnetic fields of different strengths $ B_1 $ and $ B_2 $, both normal to the plane of the paper, exist as shown in the figure. A charged particle of mass $ m $ and charge $ q $, at the interface at an instant, moves into region 2 with velocity $ v $ and returns to the interface. It continues to move into region 1 and finally reaches the interface. What is the displacement of the particle during this movement along the interface?Consider the velocity of the particle to be normal to the magnetic field and $ B_2 > B_1 $.