Step 1: Identify Current Components
The given current consists of:
Step 2: RMS Value of AC Component
For any sinusoidal current \( I_{\text{peak}} \cos(\omega t + \phi) \), the RMS value is: \[ I_{\text{AC,rms}} = \frac{I_{\text{peak}}}{\sqrt{2}} \] Here, \( I_{\text{peak}} = 10 \) Amp, so: \[ I_{\text{AC,rms}} = \frac{10}{\sqrt{2}} = 5\sqrt{2} \text{ Amp} \]
Step 3: Total RMS Value Calculation
When both DC and AC components are present: \[ I_{\text{rms}} = \sqrt{I_{\text{DC}}^2 + I_{\text{AC,rms}}^2} \] Substituting the values: \[ I_{\text{rms}} = \sqrt{(5\sqrt{2})^2 + (5\sqrt{2})^2} \] \[ I_{\text{rms}} = \sqrt{50 + 50} \] \[ I_{\text{rms}} = \sqrt{100} \] \[ I_{\text{rms}} = 10 \text{ Amp} \]
Verification
Common Mistakes to Avoid
Conclusion
The correct RMS value of the current is 3 (10 Amp).