Step 1: Identify Current Components
The given current consists of:
Step 2: RMS Value of AC Component
For any sinusoidal current \( I_{\text{peak}} \cos(\omega t + \phi) \), the RMS value is: \[ I_{\text{AC,rms}} = \frac{I_{\text{peak}}}{\sqrt{2}} \] Here, \( I_{\text{peak}} = 10 \) Amp, so: \[ I_{\text{AC,rms}} = \frac{10}{\sqrt{2}} = 5\sqrt{2} \text{ Amp} \]
Step 3: Total RMS Value Calculation
When both DC and AC components are present: \[ I_{\text{rms}} = \sqrt{I_{\text{DC}}^2 + I_{\text{AC,rms}}^2} \] Substituting the values: \[ I_{\text{rms}} = \sqrt{(5\sqrt{2})^2 + (5\sqrt{2})^2} \] \[ I_{\text{rms}} = \sqrt{50 + 50} \] \[ I_{\text{rms}} = \sqrt{100} \] \[ I_{\text{rms}} = 10 \text{ Amp} \]
Verification
Common Mistakes to Avoid
Conclusion
The correct RMS value of the current is 3 (10 Amp).
Given: \[ i = 5\sqrt{2} + 10 \cos\left(650\pi t + \frac{\pi}{6}\right) \] Squaring both sides: \[ i^2 = 50 + 100 \cos^2\left(650\pi t + \frac{\pi}{6}\right) \] Expanding: \[ i^2 = 50 + 100 \cos^2\left(650\pi t + \frac{\pi}{6}\right) + (2)(5\sqrt{2})(10) \cos\left(650\pi t + \frac{\pi}{6}\right) \] Simplifying: \[ i^2 = 50 + \frac{100}{2} + 0 \] \[ i^2 \geq 100 \] Taking the square root: \[ i \geq 10 \, \text{Amp} \] \[ \boxed{i = 10 \, \text{Amp}} \]
An alternating current is represented by the equation, $\mathrm{i}=100 \sqrt{2} \sin (100 \pi \mathrm{t})$ ampere. The RMS value of current and the frequency of the given alternating current are
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Consider the sound wave travelling in ideal gases of $\mathrm{He}, \mathrm{CH}_{4}$, and $\mathrm{CO}_{2}$. All the gases have the same ratio $\frac{\mathrm{P}}{\rho}$, where P is the pressure and $\rho$ is the density. The ratio of the speed of sound through the gases $\mathrm{v}_{\mathrm{He}}: \mathrm{v}_{\mathrm{CH}_{4}}: \mathrm{v}_{\mathrm{CO}_{2}}$ is given by