As we know,
\[ \frac{1}{f} = \left[\frac{\mu_L}{\mu_m} - 1\right] \left[\frac{1}{R_1} - \frac{1}{R_2}\right] \]
For air, \(\mu_m = 1\):
\[ \frac{1}{12} = [1.6 - 1]\left[\frac{1}{R_1} - \frac{1}{R_2}\right] \] \[ \frac{1}{12} = \frac{6}{10}\left[\frac{1}{R_1} - \frac{1}{R_2}\right] \]
\[ \left[\frac{1}{R_1} - \frac{1}{R_2}\right] = \frac{10}{72} \]
For water:
\[ \frac{1}{f} = \left[\frac{1.6}{1.28} - 1\right]\left[\frac{10}{72}\right] \] \[ \frac{1}{f} = \frac{32}{128} \times \frac{10}{72} \] \[ \frac{1}{f} = \frac{1}{4} \times \frac{10}{72} \] \[ f = 28.8 \, \text{cm} \] \[ f = 288 \, \text{mm} \] \[ \boxed{f = 28.8\,\text{cm or } 288\,\text{mm}} \]
The strain-stress plot for materials A, B, C and D is shown in the figure. Which material has the largest Young's modulus? 
