Given two equal-magnitude fields \(E_0\) making an angle \(60^\circ=\dfrac{\pi}{3}\) with each other. We need the magnitude of the resultant \(E\).
<Method 1: Law of Cosines (Parallelogram Law)>
For two vectors \(\vec{E}_1\) and \(\vec{E}_2\) with angle \(\theta\) between them, \[ E=\lVert\vec{E}_1+\vec{E}_2\rVert=\sqrt{E_1^2+E_2^2+2E_1E_2\cos\theta}. \] Here \(E_1=E_2=E_0\) and \(\theta=\dfrac{\pi}{3}\). Hence, \[ E=\sqrt{E_0^2+E_0^2+2E_0E_0\cos\frac{\pi}{3}} =\sqrt{2E_0^2+2E_0^2\cdot\frac{1}{2}} =\sqrt{2E_0^2+E_0^2} =\sqrt{3E_0^2} =\sqrt{3}\,E_0. \] Therefore \(E\approx1.732\,E_0\).
<Method 2: Component (Resolution) Method>
Place \(\vec{E}_1\) along the \(x\)-axis: \(\vec{E}_1=\langle E_0,\,0\rangle\). Let \(\vec{E}_2\) make \(60^\circ\) with \(\vec{E}_1\): \[ \vec{E}_2=\langle E_0\cos60^\circ,\,E_0\sin60^\circ\rangle =\left\langle \tfrac{E_0}{2},\,\tfrac{\sqrt{3}}{2}E_0\right\rangle. \] Then \[ \vec{E}=\vec{E}_1+\vec{E}_2 =\left\langle E_0+\tfrac{E_0}{2},\,\tfrac{\sqrt{3}}{2}E_0\right\rangle =\left\langle \tfrac{3E_0}{2},\,\tfrac{\sqrt{3}}{2}E_0\right\rangle. \] Magnitude: \[ E=\sqrt{\left(\tfrac{3E_0}{2}\right)^2+\left(\tfrac{\sqrt{3}}{2}E_0\right)^2} =\sqrt{\tfrac{9E_0^2}{4}+\tfrac{3E_0^2}{4}} =\sqrt{\tfrac{12E_0^2}{4}} =\sqrt{3}\,E_0. \] Direction (optional): the angle \(\phi\) that \(\vec{E}\) makes with \(\vec{E}_1\) satisfies \[ \tan\phi=\frac{E_y}{E_x} =\frac{\tfrac{\sqrt{3}}{2}E_0}{\tfrac{3}{2}E_0} =\frac{\sqrt{3}}{3} \;\Rightarrow\; \phi=30^\circ. \] Thus the resultant has magnitude \(\boxed{\sqrt{3}\,E_0\approx1.73\,E_0}\) and lies \(30^\circ\) from either vector toward the other (bisecting the angle since magnitudes are equal).

A symmetric thin biconvex lens is cut into four equal parts by two planes AB and CD as shown in the figure. If the power of the original lens is 4D, then the power of a part of the divided lens is:
