We are given two electric field components of plane polarized light:
\[
E_1 = E_0 \sin(\omega t)
\]
\[
E_2 = E_0 \sin\left( \omega t + \frac{\pi}{3} \right)
\]
The amplitude of the resultant wave is given by the formula:
\[
E_{\text{res}} = \sqrt{E_1^2 + E_2^2 + 2E_1 E_2 \cos(\phi)}
\]
where \( \phi = \frac{\pi}{3} \) is the phase difference between the two waves.
Substitute the values:
\[
E_{\text{res}} = \sqrt{E_0^2 + E_0^2 + 2E_0^2 \cos\left( \frac{\pi}{3} \right)}
\]
Since \( \cos\left( \frac{\pi}{3} \right) = \frac{1}{2} \), we get:
\[
E_{\text{res}} = \sqrt{E_0^2 + E_0^2 + E_0^2} = \sqrt{3E_0^2} = \sqrt{3} E_0
\]
Thus, the amplitude of the resultant wave is \( \sqrt{3} E_0 \approx 1.7 E_0 \).