To find the total enthalpy change, we need to consider both the freezing process and the cooling of the substance:
1. Freezing process: The enthalpy change for freezing is \( \Delta_{\text{fus}}H = -x \), since freezing is an exothermic process.
2. Cooling of liquid water: The enthalpy change for cooling the water from 10°C to 0°C is calculated using the specific heat capacity of liquid water: \[ \Delta H_1 = -10y \]
3. Cooling of ice: The enthalpy change for cooling the ice from 0°C to -10°C is calculated using the specific heat capacity of ice: \[ \Delta H_2 = -10z \]
Thus, the total enthalpy change can be expressed as: \[ \Delta H = -x - 10y - 10z \] The term \( x \) is given in kJ/mol and should be multiplied by 100 to convert it to J/mol to match the units of \( y \) and \( z \) (which are in J/mol·K).
Thus the correct expression for the total enthalpy change is: \[ \Delta H = -10(100x + y + z) \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: