In a hydrogen-like ion, the energy levels are given by the formula: \[ E_n = - \frac{13.6 \, \text{eV} \times Z^2}{n^2} \] where: \( E_n \) is the energy of the \( n^{th} \) level, \( Z \) is the atomic number, \( n \) is the principal quantum number (1, 2, 3, etc.).
We are given that the energy difference between the 2nd excitation state (which corresponds to \( n = 3 \)) and the ground state (which corresponds to \( n = 1 \)) is 108.8 eV. The energy for the \( n = 3 \) state is: \[ E_3 = - \frac{13.6 \times Z^2}{3^2} = - \frac{13.6 Z^2}{9} \] The energy for the \( n = 1 \) state (ground state) is: \[ E_1 = - \frac{13.6 Z^2}{1^2} = - 13.6 Z^2 \] The energy difference \( \Delta E \) between the 2nd excitation state and the ground state is: \[ \Delta E = E_1 - E_3 = - 13.6 Z^2 - \left( - \frac{13.6 Z^2}{9} \right) \] \[ \Delta E = - 13.6 Z^2 + \frac{13.6 Z^2}{9} = 13.6 Z^2 \left( 1 - \frac{1}{9} \right) \] \[ \Delta E = 13.6 Z^2 \times \frac{8}{9} = \frac{108.8 Z^2}{9} \] We are given that \( \Delta E = 108.8 \, \text{eV} \), so: \[ \frac{108.8 Z^2}{9} = 108.8 \] \[ Z^2 = 9 \quad \Rightarrow \quad Z = 3 \]
Thus, the atomic number of the ion is 3.
Given: \[ \Delta E = 108.8 \, \text{eV} \] Also, the energy difference equation is given by: \[ \Delta E = 13.6 Z^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] Here, \( n_1 = 1 \) and \( n_2 = 3 \), so: \[ 108.8 = 13.6 Z^2 \left( \frac{1}{12} - \frac{1}{32} \right) \] Simplifying: \[ 8 = Z^2 \left( \frac{8}{3} \right) \] Solving for \(Z^2\): \[ Z^2 = 9 \] Thus: \[ Z = 3 \] \[ \boxed{Z = 3} \]
Which of the following is/are correct with respect to the energy of atomic orbitals of a hydrogen atom?
(A) \( 1s<2s<2p<3d<4s \)
(B) \( 1s<2s = 2p<3s = 3p \)
(C) \( 1s<2s<2p<3s<3p \)
(D) \( 1s<2s<4s<3d \)
Choose the correct answer from the options given below:
The energy of an electron in first Bohr orbit of H-atom is $-13.6$ eV. The magnitude of energy value of electron in the first excited state of Be$^{3+}$ is _____ eV (nearest integer value)
Correct statements for an element with atomic number 9 are
A. There can be 5 electrons for which $ m_s = +\frac{1}{2} $ and 4 electrons for which $ m_s = -\frac{1}{2} $
B. There is only one electron in $ p_z $ orbital.
C. The last electron goes to orbital with $ n = 2 $ and $ l = 1 $.
D. The sum of angular nodes of all the atomic orbitals is 1.
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: