Step 1: Understand Apparent ShiftThe apparent shift occurs due to refraction at the liquid-air interface. The total apparent shift is the sum of shifts caused by each liquid layer.
Step 2: Formula for Apparent ShiftFor a liquid layer of height \( h \) and refractive index \( \mu \), the apparent shift is given by:
\[
\text{Shift} = h\left(1 - \frac{1}{\mu}\right)
\]
Step 3: Calculate Shifts for Both Liquids
- For the first liquid (\( \mu_1 = 1.2 \), \( h_1 = 60 \) cm):
\[
\text{Shift}_1 = 60\left(1 - \frac{1}{1.2}\right) = 60\left(1 - \frac{5}{6}\right) = 60 \times \frac{1}{6} = 10 \text{ cm}
\]
- For the second liquid (\( \mu_2 = 1.6 \), \( h_2 = H \) cm):
\[
\text{Shift}_2 = H\left(1 - \frac{1}{1.6}\right) = H\left(1 - \frac{5}{8}\right) = H \times \frac{3}{8} = \frac{3H}{8} \text{ cm}
\]
Step 4: Total Apparent ShiftThe total apparent shift is given as 40 cm:
\[
\text{Shift}_1 + \text{Shift}_2 = 40 \text{ cm}
\]
\[
10 + \frac{3H}{8} = 40
\]
Step 5: Solve for \( H \)\[
\frac{3H}{8} = 30
\]
\[
3H = 240
\]
\[
H = 80 \text{ cm}
\]
VerificationLet's verify the calculation:
\[
\text{Total shift} = 10 + \frac{3 \times 80}{8} = 10 + 30 = 40 \text{ cm}
\]
This matches the given condition.
ConclusionThe height \( H \) of the second liquid layer is \(80\) cm.