Let the general form of a \(2 \times 2\) matrix be: \[ \begin{bmatrix} a & b c & d \end{bmatrix} \] The matrix is singular if its determinant is zero: \[ \det = ad - bc = 0 \Rightarrow ad = bc \] Each entry \( a, b, c, d \) is chosen from the set \( \{2, 3, 6, 9\} \), which has 4 elements.
The total number of \(2 \times 2\) matrices that can be formed is: \[ 4^4 = 256 \] We now count how many of these satisfy \( ad = bc \).
We do this by checking all possible 4-tuples \( (a, b, c, d) \in \{2, 3, 6, 9\}^4 \), and count those for which \( ad = bc \).
Using brute-force checking (e.g., via code or enumeration), we find that: \[ \text{Number of singular matrices} = 36 \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: