Let the general form of a \(2 \times 2\) matrix be: \[ \begin{bmatrix} a & b c & d \end{bmatrix} \] The matrix is singular if its determinant is zero: \[ \det = ad - bc = 0 \Rightarrow ad = bc \] Each entry \( a, b, c, d \) is chosen from the set \( \{2, 3, 6, 9\} \), which has 4 elements.
The total number of \(2 \times 2\) matrices that can be formed is: \[ 4^4 = 256 \] We now count how many of these satisfy \( ad = bc \).
We do this by checking all possible 4-tuples \( (a, b, c, d) \in \{2, 3, 6, 9\}^4 \), and count those for which \( ad = bc \).
Using brute-force checking (e.g., via code or enumeration), we find that: \[ \text{Number of singular matrices} = 36 \]
Given determinant: \[ \begin{vmatrix} a & d \\ b & c \end{vmatrix} = ab - bc = 0 \Rightarrow ad = bc \] Case I: Exactly 1 number is used All matrices will be singular. \[ \Rightarrow {}^4C_1 = 4 \] Case II: Exactly 2 numbers are used \[ {}^4C_2 \times 2 \times 2 = 6 \times 4 = 24 \] However, only those with \(ad = bc\) will be singular. So, 6 matrices possible. Case III: Exactly 3 numbers are used None will be singular. \[ \Rightarrow 0 \text{ matrices.} \] --- ### Case IV: Exactly 4 numbers are used For \(ab = cd\): \[ 2 \times 9 = 3 \times 6 \] \[ \Rightarrow {}^4C_1 \times 2! = 8 \text{ matrices.} \] --- Therefore, \[ 4 + 24 + 0 + 8 = 36 \] \[ \boxed{\text{Total number of singular matrices = 36}} \]
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:

Given below are two statements I and II.
Statement I: Dumas method is used for estimation of "Nitrogen" in an organic compound.
Statement II: Dumas method involves the formation of ammonium sulfate by heating the organic compound with concentrated H\(_2\)SO\(_4\). In the light of the above statements, choose the correct answer from the options given below: