Let the general form of a \(2 \times 2\) matrix be: \[ \begin{bmatrix} a & b c & d \end{bmatrix} \] The matrix is singular if its determinant is zero: \[ \det = ad - bc = 0 \Rightarrow ad = bc \] Each entry \( a, b, c, d \) is chosen from the set \( \{2, 3, 6, 9\} \), which has 4 elements.
The total number of \(2 \times 2\) matrices that can be formed is: \[ 4^4 = 256 \] We now count how many of these satisfy \( ad = bc \).
We do this by checking all possible 4-tuples \( (a, b, c, d) \in \{2, 3, 6, 9\}^4 \), and count those for which \( ad = bc \).
Using brute-force checking (e.g., via code or enumeration), we find that: \[ \text{Number of singular matrices} = 36 \]
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
0.5 g of an organic compound on combustion gave 1.46 g of $ CO_2 $ and 0.9 g of $ H_2O $. The percentage of carbon in the compound is ______ (Nearest integer) $\text{(Given : Molar mass (in g mol}^{-1}\text{ C : 12, H : 1, O : 16})$
Given: $ \Delta H_f^0 [C(graphite)] = 710 $ kJ mol⁻¹ $ \Delta_c H^0 = 414 $ kJ mol⁻¹ $ \Delta_{H-H}^0 = 436 $ kJ mol⁻¹ $ \Delta_{C-H}^0 = 611 $ kJ mol⁻¹
The \(\Delta H_{C=C}^0 \text{ for }CH_2=CH_2 \text{ is }\) _____\(\text{ kJ mol}^{-1} \text{ (nearest integer value)}\)
Consider the following reactions $ A + HCl + H_2SO_4 \rightarrow CrO_2Cl_2$ + Side Products Little amount $ CrO_2Cl_2(vapour) + NaOH \rightarrow B + NaCl + H_2O $ $ B + H^+ \rightarrow C + H_2O $ The number of terminal 'O' present in the compound 'C' is ______