Let 𝑋1,𝑋2, … , 𝑋𝑛 be a random sample from a population having the probability density function
\(f(x;μ) =\begin{cases} \frac{1}{2}e-(\frac{x-2μ}{2}), & \quad \text{if }0>2μ,\\ 0, & \quad Otherwise \end{cases}\)
where −∞ < 𝜇 < ∞. For estimating 𝜇, consider estimators
\(T_1=\frac{\overline{X}-2}{2}\) and \(T_2=\frac{nX_{(1)}-2}{2n}\)
where 𝑋̅ =\(\frac{1 }{𝑛} ∑^n_{i=1} x_i\) and Xi and X(i)=min{𝑋1, 𝑋2, … , 𝑋𝑛}. Then, which one of the following statements is TRUE?