Given:
Time period when elevator is stationary: \( T_0 \)
Elevator accelerates upward with \( a = 0.2g \)
Effective gravity: \( g_{\text{eff}} = g + a = g + 0.2g = 1.2g \)
Time period of a simple pendulum: \[ T = 2\pi \sqrt{\frac{L}{g}} \] Thus, \[ T_0 = 2\pi \sqrt{\frac{L}{g}}, \qquad T_1 = 2\pi \sqrt{\frac{L}{1.2g}} \] Required ratio: \[ \frac{T_0}{T_1} = \frac{2\pi\sqrt{\frac{L}{g}}}{2\pi\sqrt{\frac{L}{1.2g}}} = \sqrt{\frac{1.2g}{g}} = \sqrt{1.2} \] Calculate: \[ \sqrt{1.2} \approx 1.095 \] Final Answer:
\[ \frac{T_0}{T_1} \approx 1.10 \]
Using a variable frequency ac voltage source the maximum current measured in the given LCR circuit is 50 mA for V = 5 sin (100t) The values of L and R are shown in the figure. The capacitance of the capacitor (C) used is_______ Β΅F.

