To determine the ratio of the root-mean-square speed (\(v_{\text{rms}}\)) and the most probable speed (\(v_{\text{max}}\)) for particles following the Maxwell-Boltzmann speed distribution, we need to derive both speeds from the given distribution and then compute their ratio.
The Maxwell-Boltzmann speed distribution function is given by:
\(f(v) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)\)where:
1. **Root-Mean-Square Speed \((v_{\text{rms}})\):**
The root-mean-square speed is given by the formula:
\(v_{\text{rms}} = \sqrt{\frac{3k_B T}{m}}\)2. **Most Probable Speed \((v_{\text{max}})\):**
The most probable speed is derived by maximizing the function \(f(v)\). Setting the derivative \( \frac{d}{dv}f(v) = 0\), yields:
\(v_{\text{max}} = \sqrt{\frac{2k_B T}{m}}\)3. **Ratio of \(v_{\text{rms}}\) to \(v_{\text{max}}\):**
To find the ratio:
\[ \frac{v_{\text{rms}}}{v_{\text{max}}} = \frac{\sqrt{\frac{3k_B T}{m}}}{\sqrt{\frac{2k_B T}{m}}} = \sqrt{\frac{3}{2}} \]Thus, the correct answer is \(\sqrt{\frac{3}{2}}\).
This answer matches option one: \(\sqrt{\frac{3}{2}}\), and hence it is the correct choice.
