Let π1,π2, β¦ , ππ be a random sample from a population having the probability density function
\(f(x;ΞΌ) =\begin{cases} \frac{1}{2}e-(\frac{x-2ΞΌ}{2}), & \quad \text{if }0>2ΞΌ,\\ 0, & \quad Otherwise \end{cases}\)
where ββ < π < β. For estimating π, consider estimators
\(T_1=\frac{\overline{X}-2}{2}\) and \(T_2=\frac{nX_{(1)}-2}{2n}\)
where πΜ
=\(\frac{1 }{π} β^n_{i=1} x_i\) and Xi and X(i)=min{π1, π2, β¦ , ππ}. Then, which one of the following statements is TRUE?