Question:

Let 𝑋1,𝑋2, … , 𝑋𝑛 be a random sample from a \(u(ΞΈ +\frac{Οƒ}{\sqrt3},ΞΈ+\sqrt3Οƒ)\) distribution, where πœƒ ∈ ℝ and 𝜎>0 are unknown parameters. Let 𝑋̅ =\(\frac{ 1}{ 𝑛} βˆ‘^n _{i=1}X_i\) and \(𝑆 =\sqrt \frac{1}{n} βˆ‘^n_{i=1}(X_i-\overline{X})^2\) Let \(\^ΞΈ\) and \(\^Οƒ\) be the method of moment estimators of πœƒ and 𝜎 ,respectively. Then, which one of the following statements is FALSE?

Updated On: Oct 1, 2024
  • \(\^Οƒ+\sqrt3\^ΞΈ=\sqrt3\overline{X}-3s\)
  • \(2\sqrt3\^Οƒ+\^ΞΈ=\overline{X}-4\sqrt3S\)
  • \(\sqrt3\^Οƒ+\^ΞΈ=\overline{X}+\sqrt3\,S\)
  • \(\^Οƒ-\sqrt3\,\^ΞΈ=9\,S-\sqrt3\,\overline{X}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is (B): \(2\sqrt3\^Οƒ+\^ΞΈ=\overline{X}-4\sqrt3S\)
Was this answer helpful?
0
0

Top Questions on Sampling Distributions

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions