Let the determinant of a square matrix A of order \( m \) be \( m - n \), where \( m \) and \( n \) satisfy \( 4m + n = 22 \) and \( 17m + 4n = 93 \). If \( \text{det} (n \, \text{adj}(\text{adj}(mA))) = 3^a 5^b 6^c \), then \( a + b + c \) is equal to:
List I - Complex
List II - Crystal Field Splitting energy (△0)