Solution:
Given:
$B = 0.4$ T
$\frac{dr}{dt} = 1 \text{ mm/s} = 1 \times 10^{-3} \text{ m/s}$
$r = 2 \text{ cm} = 2 \times 10^{-2} \text{ m}$
$\theta = 0^\circ$ (plane perpendicular to the field)
The area of the loop is $A = \pi r^2$.
The magnetic flux is $\Phi = B \pi r^2 \cos 0^\circ = B \pi r^2$. Induced emf: $$ \varepsilon = -\frac{d(B \pi r^2)}{dt} = -B \pi \frac{d(r^2)}{dt} = -B \pi (2r \frac{dr}{dt}) = -2 \pi B r \frac{dr}{dt} $$ Substituting the given values: $$ \varepsilon = -2 \pi (0.4) (2 \times 10^{-2}) (1 \times 10^{-3}) = -1.6 \pi \times 10^{-5} \text{ V} $$ $$ \varepsilon = -16 \pi \times 10^{-6} \text{ V} = -16 \pi \mu \text{V} $$ Magnitude of the induced emf: $$ |\varepsilon| = 16 \pi \mu \text{V} $$ $$ |\varepsilon| = 16 \times 3.14159 \mu \text{V} \approx 50.265 \mu \text{V} $$ Therefore, the magnitude of the induced emf in the loop is approximately 50.265 $\mu V$.
Answer: 50.265
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.