Solution:
Given:
$B = 0.4$ T
$\frac{dr}{dt} = 1 \text{ mm/s} = 1 \times 10^{-3} \text{ m/s}$
$r = 2 \text{ cm} = 2 \times 10^{-2} \text{ m}$
$\theta = 0^\circ$ (plane perpendicular to the field)
The area of the loop is $A = \pi r^2$.
The magnetic flux is $\Phi = B \pi r^2 \cos 0^\circ = B \pi r^2$. Induced emf: $$ \varepsilon = -\frac{d(B \pi r^2)}{dt} = -B \pi \frac{d(r^2)}{dt} = -B \pi (2r \frac{dr}{dt}) = -2 \pi B r \frac{dr}{dt} $$ Substituting the given values: $$ \varepsilon = -2 \pi (0.4) (2 \times 10^{-2}) (1 \times 10^{-3}) = -1.6 \pi \times 10^{-5} \text{ V} $$ $$ \varepsilon = -16 \pi \times 10^{-6} \text{ V} = -16 \pi \mu \text{V} $$ Magnitude of the induced emf: $$ |\varepsilon| = 16 \pi \mu \text{V} $$ $$ |\varepsilon| = 16 \times 3.14159 \mu \text{V} \approx 50.265 \mu \text{V} $$ Therefore, the magnitude of the induced emf in the loop is approximately 50.265 $\mu V$.
Answer: 50.265

An infinite wire has a circular bend of radius \( a \), and carrying a current \( I \) as shown in the figure. The magnitude of the magnetic field at the origin \( O \) of the arc is given by:

\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]