The magnetic field inside a solenoid is given by the formula:
\( B = \mu_0 \cdot n \cdot I \)
Where:
First, calculate the number of turns per unit length: \[ n = \frac{N}{l} = \frac{60}{0.15} = 400 \, \text{turns/m} \] Now substitute into the formula: \[ B = \mu_0 \cdot n \cdot I \] \[ 2.4 \times 10^{-3} = (4\pi \times 10^{-7}) \cdot 400 \cdot I \]
Rearranging the formula for \( I \): \[ I = \frac{B}{\mu_0 \cdot n} \] Substituting the values: \[ I = \frac{2.4 \times 10^{-3}}{(4\pi \times 10^{-7}) \cdot 400} \] Simplify: \[ I = \frac{2.4 \times 10^{-3}}{1.6 \times 10^{-4}} \] \[ I = 100 \, \text{A} \]
The current in the solenoid is \( \boxed{100 \, \text{A}} \).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
