The magnetic field inside a solenoid is given by the formula:
\( B = \mu_0 \cdot n \cdot I \)
Where:
First, calculate the number of turns per unit length: \[ n = \frac{N}{l} = \frac{60}{0.15} = 400 \, \text{turns/m} \] Now substitute into the formula: \[ B = \mu_0 \cdot n \cdot I \] \[ 2.4 \times 10^{-3} = (4\pi \times 10^{-7}) \cdot 400 \cdot I \]
Rearranging the formula for \( I \): \[ I = \frac{B}{\mu_0 \cdot n} \] Substituting the values: \[ I = \frac{2.4 \times 10^{-3}}{(4\pi \times 10^{-7}) \cdot 400} \] Simplify: \[ I = \frac{2.4 \times 10^{-3}}{1.6 \times 10^{-4}} \] \[ I = 100 \, \text{A} \]
The current in the solenoid is \( \boxed{100 \, \text{A}} \).
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)