The magnetic field inside a solenoid is given by the formula:
\( B = \mu_0 \cdot n \cdot I \)
Where:
First, calculate the number of turns per unit length: \[ n = \frac{N}{l} = \frac{60}{0.15} = 400 \, \text{turns/m} \] Now substitute into the formula: \[ B = \mu_0 \cdot n \cdot I \] \[ 2.4 \times 10^{-3} = (4\pi \times 10^{-7}) \cdot 400 \cdot I \]
Rearranging the formula for \( I \): \[ I = \frac{B}{\mu_0 \cdot n} \] Substituting the values: \[ I = \frac{2.4 \times 10^{-3}}{(4\pi \times 10^{-7}) \cdot 400} \] Simplify: \[ I = \frac{2.4 \times 10^{-3}}{1.6 \times 10^{-4}} \] \[ I = 100 \, \text{A} \]
The current in the solenoid is \( \boxed{100 \, \text{A}} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: