Question:

A solenoid having 60 turns and length 15 cm produces magnetic field of 2.4 × 10–3 T, Find the current in the solenoid

Updated On: Jan 15, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 100

Solution and Explanation

Given:

  • Number of turns (\( N \)) = 60
  • Length of the solenoid (\( l \)) = 15 cm = 0.15 m
  • Magnetic field (\( B \)) = \( 2.4 \times 10^{-3} \, \text{T} \)
  • Permeability of free space (\( \mu_0 \)) = \( 4\pi \times 10^{-7} \, \text{T·m/A} \)

Step 1: Formula for Magnetic Field in a Solenoid

The magnetic field inside a solenoid is given by the formula:

\( B = \mu_0 \cdot n \cdot I \)

Where:

  • \( B \): Magnetic field
  • \( \mu_0 \): Permeability of free space
  • \( n = \frac{N}{l} \): Number of turns per unit length
  • \( I \): Current in the solenoid

Step 2: Substituting Values

First, calculate the number of turns per unit length: \[ n = \frac{N}{l} = \frac{60}{0.15} = 400 \, \text{turns/m} \] Now substitute into the formula: \[ B = \mu_0 \cdot n \cdot I \] \[ 2.4 \times 10^{-3} = (4\pi \times 10^{-7}) \cdot 400 \cdot I \]

Step 3: Solve for Current (\( I \))

Rearranging the formula for \( I \): \[ I = \frac{B}{\mu_0 \cdot n} \] Substituting the values: \[ I = \frac{2.4 \times 10^{-3}}{(4\pi \times 10^{-7}) \cdot 400} \] Simplify: \[ I = \frac{2.4 \times 10^{-3}}{1.6 \times 10^{-4}} \] \[ I = 100 \, \text{A} \]

Step 4: Final Answer

The current in the solenoid is \( \boxed{100 \, \text{A}} \).

Was this answer helpful?
0
0

Top Questions on Magnetic Field

View More Questions