The magnetic field inside a solenoid is given by the formula:
\( B = \mu_0 \cdot n \cdot I \)
Where:
First, calculate the number of turns per unit length: \[ n = \frac{N}{l} = \frac{60}{0.15} = 400 \, \text{turns/m} \] Now substitute into the formula: \[ B = \mu_0 \cdot n \cdot I \] \[ 2.4 \times 10^{-3} = (4\pi \times 10^{-7}) \cdot 400 \cdot I \]
Rearranging the formula for \( I \): \[ I = \frac{B}{\mu_0 \cdot n} \] Substituting the values: \[ I = \frac{2.4 \times 10^{-3}}{(4\pi \times 10^{-7}) \cdot 400} \] Simplify: \[ I = \frac{2.4 \times 10^{-3}}{1.6 \times 10^{-4}} \] \[ I = 100 \, \text{A} \]
The current in the solenoid is \( \boxed{100 \, \text{A}} \).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}