Let the foot of perpendicular of the point P(3, -2, -9) on the plane passing through the points (-1, -2, -3), (9, 3, 4), (9, -2, 1) be Q(α, β, γ). Then the distance of Q from the origin is
Let $y=f(x)$ represent a parabola with focus $\left(-\frac{1}{2}, 0\right)$ and directrix $y=-\frac{1}{2}$ Then $S=\left\{x \in R : \tan ^{-1}(\sqrt{f(x)})+\sin ^{-1}(\sqrt{f(x)+1})=\frac{\pi}{2}\right\}$ :
If (a, β) is the orthocenter of the triangle ABC with vertices A(3, -7), B(-1, 2), and C(4, 5), then 9α-6β+60 is equal to
Let a differentiable function $f$ satisfy $f(x)+\int\limits_3^x \frac{f(t)}{t} d t=\sqrt{x+1}, x \geq 3$ Then $12 f(8)$ is equal to :
Let [x] denote the greatest integer function and f(x) = max{1+x+[x], 2+x, x+2[x]}, 0 ≤ x ≤2. Let m be the number of points in [0, 2], where f is not continuous and n be the number of points in (0, 2), where f is not differentiable. Then (m+n)² + 2 is equal to 2
Let (a+bx+cx²)10 = $ \sum_{i=0}^{20} $ pixi, a,b,c∈N. If p1=20 and P₂ = 210, then 2(a+b+c) is equal to
The total number of three-digit numbers, divisible by 3, which can be formed using the digits 1,3,5,8, if repetition of digits is allowed, is