The magnetic field at the center of a circular loop of radius \( r \) carrying current \( i \) is given by:
\( B = \frac{\mu_0 i}{2r} \)
where \( \mu_0 = 4\pi \times 10^{-7} \text{ T m/A} \) is the permeability of free space.
The two loops are identical, with radius \( r = 20 \text{ cm} = 0.2 \text{ m} \) and current \( i = \sqrt{2} \text{ A} \). The magnetic field due to each loop at the center has a magnitude of:
\( B = \frac{\mu_0 i}{2r} = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (\sqrt{2} \text{ A})}{2(0.2 \text{ m})} \)
Since the loops are in perpendicular planes, their magnetic fields at the center are perpendicular to each other. Let the magnetic field due to one loop be along the x-axis and the magnetic field due to the other loop be along the y-axis. The net magnetic field (\( \vec{B}_{net} \)) is the vector sum of the individual fields:
\( \vec{B}_{net} = \frac{\mu_0 i}{2r} \hat{i} + \frac{\mu_0 i}{2r} \hat{j} \)
The magnitude of the net magnetic field is:
\( B_{net} = \sqrt{\left( \frac{\mu_0 i}{2r} \right)^2 + \left( \frac{\mu_0 i}{2r} \right)^2} = \sqrt{2} \frac{\mu_0 i}{2r} = \frac{\mu_0 i \sqrt{2}}{2r} \)
\( B_{net} = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (\sqrt{2} \text{ A}) \sqrt{2}}{2(0.2 \text{ m})} = \frac{4\pi \times 10^{-7} \times 2}{0.4} = 2\pi \times 10^{-6} \text{ T} \)
Using \( \pi = 3.14 \):
\( B_{net} = 2 \times 3.14 \times 10^{-6} \text{ T} = 6.28 \times 10^{-6} \text{ T} = 628 \times 10^{-8} \text{ T} \)
The net magnetic field at the center is \( \mathbf{628 \times 10^{-8} \text{ T}} \).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}