The magnetic field at the center of a circular loop of radius \( r \) carrying current \( i \) is given by:
\( B = \frac{\mu_0 i}{2r} \)
where \( \mu_0 = 4\pi \times 10^{-7} \text{ T m/A} \) is the permeability of free space.
The two loops are identical, with radius \( r = 20 \text{ cm} = 0.2 \text{ m} \) and current \( i = \sqrt{2} \text{ A} \). The magnetic field due to each loop at the center has a magnitude of:
\( B = \frac{\mu_0 i}{2r} = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (\sqrt{2} \text{ A})}{2(0.2 \text{ m})} \)
Since the loops are in perpendicular planes, their magnetic fields at the center are perpendicular to each other. Let the magnetic field due to one loop be along the x-axis and the magnetic field due to the other loop be along the y-axis. The net magnetic field (\( \vec{B}_{net} \)) is the vector sum of the individual fields:
\( \vec{B}_{net} = \frac{\mu_0 i}{2r} \hat{i} + \frac{\mu_0 i}{2r} \hat{j} \)
The magnitude of the net magnetic field is:
\( B_{net} = \sqrt{\left( \frac{\mu_0 i}{2r} \right)^2 + \left( \frac{\mu_0 i}{2r} \right)^2} = \sqrt{2} \frac{\mu_0 i}{2r} = \frac{\mu_0 i \sqrt{2}}{2r} \)
\( B_{net} = \frac{(4\pi \times 10^{-7} \text{ T m/A}) (\sqrt{2} \text{ A}) \sqrt{2}}{2(0.2 \text{ m})} = \frac{4\pi \times 10^{-7} \times 2}{0.4} = 2\pi \times 10^{-6} \text{ T} \)
Using \( \pi = 3.14 \):
\( B_{net} = 2 \times 3.14 \times 10^{-6} \text{ T} = 6.28 \times 10^{-6} \text{ T} = 628 \times 10^{-8} \text{ T} \)
The net magnetic field at the center is \( \mathbf{628 \times 10^{-8} \text{ T}} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: