As per the given figure, if $\frac{ dI }{ dt }=-1 A /$ s then the value of $V _{ AB }$ at this instant will be ______$V$

The correct answer is 30.
The differential equation for the circuit is given by:
\[ \frac{dI}{dt} = -1 \ \text{A/sec} \]
The equation for the potential difference across the circuit is:
\[ V_A - IR - L \frac{dI}{dt} - 12 = V_B \]
Substitute \(I = 2 \ \text{A}\), \(R = 12 \ \Omega\), \(L = 6 \ \text{H}\), and \(\frac{dI}{dt} = -1\):
\[ V_A - 2 \times 12 - 6(-1) - 12 = V_B \]
Simplify the equation:
\[ V_A - V_B = 36 - 6 = 30 \ \text{volts} \]
\(V_A - V_B = 30 \ \text{volts}\)
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:

0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion, produced 0.9 g H₂O. Molar mass of (X) is ___________g mol\(^{-1}\).
The magnetic field is a field created by moving electric charges. It is a force field that exerts a force on materials such as iron when they are placed in its vicinity. Magnetic fields do not require a medium to propagate; they can even propagate in a vacuum. Magnetic field also referred to as a vector field, describes the magnetic influence on moving electric charges, magnetic materials, and electric currents.