Formulas for motional emf \((E = Blv)\) and the force on a current carrying conductor in a magnetic field \((F = BIl)\). Make sure your units are con sistent
The force on a conductor in a magnetic field is given by:
\( F = I \ell B \)
Where:
The current \( I \) can be expressed as:
\( I = \frac{e}{R} \)
Substitute \( I \) into the force equation:
\[ F = Bv \ell B \cdot \frac{\ell}{R} \]
Simplify:
\[ F = \frac{B^2 \ell^2 v}{R} \]
Given:
Substitute these values into the equation:
\[ F = \frac{(15)^2 \cdot (1)^2 \cdot 4}{5} \]
Simplify:
\[ F = \frac{225 \cdot 4}{5} = 180 \, \text{N} \]
The magnetic force is \( F = 18 \, \text{N}. \)
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____.
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
A bar magnet has total length \( 2l = 20 \) units and the field point \( P \) is at a distance \( d = 10 \) units from the centre of the magnet. If the relative uncertainty of length measurement is 1\%, then the uncertainty of the magnetic field at point P is:
A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of \( 2 \times 10^5 \, \text{m/s} \). When the electric field is switched off, the proton moves along a circular path of radius 2 cm. The magnitude of electric field is \( x \times 10^4 \, \text{N/C} \). The value of \( x \) is \(\_\_\_\_\_\). (Take the mass of the proton as \( 1.6 \times 10^{-27} \, \text{kg} \)).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):